Paper 3, Section I, I

Number Theory
Part II, 2016

Show that the exact power of a prime pp dividing N!N ! is j=1Npj\sum_{j=1}^{\infty}\left\lfloor\frac{N}{p^{j}}\right\rfloor. By considering the prime factorisation of (2nn)\left(\begin{array}{c}2 n \\ n\end{array}\right), show that

4n2n+1(2nn)(2n)π(2n)\frac{4^{n}}{2 n+1} \leqslant\left(\begin{array}{c} 2 n \\ n \end{array}\right) \leqslant(2 n)^{\pi(2 n)}

Setting n=x2n=\left\lfloor\frac{x}{2}\right\rfloor, deduce that for xx sufficiently large

π(x)>x2log3logx>x2logx\pi(x)>\frac{\left\lfloor\frac{x}{2}\right\rfloor \log 3}{\log x}>\frac{x}{2 \log x}