Paper 1, Section I, I

Number Theory
Part II, 2016

Define the Riemann zeta function ζ(s)\zeta(s) for Re(s)>1\operatorname{Re}(s)>1. State and prove the alternative formula for ζ(s)\zeta(s) as an Euler product. Hence or otherwise show that ζ(s)0\zeta(s) \neq 0 for Re(s)>1\operatorname{Re}(s)>1.