Paper 2, Section II, I
Part II, 2017
Let be an algebraically closed field of any characteristic.
(a) Define what it means for a variety to be non-singular at a point .
(b) Let be a hypersurface for an irreducible homogeneous polynomial. Show that the set of singular points of is , where is the ideal generated by
(c) Consider the projective plane curve corresponding to the affine curve in given by the equation
Find the singular points of this projective curve if char . What goes wrong if char ?