Paper 3, Section II, I

Algebraic Geometry
Part II, 2017

(a) Define what it means to give a rational map between algebraic varieties. Define a birational map.

(b) Let

X=Z(y2x2(x1))A2X=Z\left(y^{2}-x^{2}(x-1)\right) \subseteq \mathbb{A}^{2}

Define a birational map from XX to A1\mathbb{A}^{1}. [Hint: Consider lines through the origin.]

(c) Let YA3Y \subseteq \mathbb{A}^{3} be the surface given by the equation

x12x2+x22x3+x32x1=0.x_{1}^{2} x_{2}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}=0 .

Consider the blow-up XA3×P2X \subseteq \mathbb{A}^{3} \times \mathbb{P}^{2} of A3\mathbb{A}^{3} at the origin, i.e. the subvariety of A3×P2\mathbb{A}^{3} \times \mathbb{P}^{2} defined by the equations xiyj=xjyix_{i} y_{j}=x_{j} y_{i} for 1i<j31 \leqslant i<j \leqslant 3, with y1,y2,y3y_{1}, y_{2}, y_{3} coordinates on P2\mathbb{P}^{2}. Let φ:XA3\varphi: X \rightarrow \mathbb{A}^{3} be the projection and E=φ1(0)E=\varphi^{-1}(0). Recall that the proper transform Y~\tilde{Y} of YY is the closure of φ1(Y)\E\varphi^{-1}(Y) \backslash E in XX. Give equations for Y~\tilde{Y}, and describe the fibres of the morphism φY~:Y~Y\left.\varphi\right|_{\widetilde{Y}}: \widetilde{Y} \rightarrow Y.