Paper 1, Section II, G

Number Theory
Part II, 2017

Define the Legendre symbol (ap)\left(\frac{a}{p}\right).

State Gauss' lemma and use it to compute (2p)\left(\frac{2}{p}\right) where pp is an odd prime.

Show that if m4m \geqslant 4 is a power of 2 , and pp is a prime dividing 2m+12^{m}+1, then p1(mod4m)p \equiv 1(\bmod 4 m).