Paper 2, Section II, K
During each of time periods a venture capitalist, Vicky, is presented with an investment opportunity for which the rate of return for that period is a random variable; the rates of return in successive periods are independent identically distributed random variables with distributions concentrated on . Thus, if is Vicky's capital at period , then , where is the proportion of her capital she chooses to invest at period , and is the rate of return for period . Vicky desires to maximize her expected yield over periods, where the yield is defined as , and and are respectively her initial and final capital.
(a) Express the problem of finding an optimal policy in a dynamic programming framework.
(b) Show that in each time period, the optimal strategy can be expressed in terms of the quantity which solves the optimization problem . Show that if . [Do not calculate explicitly.]
(c) Compare her optimal policy with the policy which maximizes her expected final capital .