Paper 3, Section II, K

Optimization and Control
Part II, 2017

A particle follows a discrete-time trajectory on R\mathbb{R} given by

xt+1=(Axt+ut)ξt+ϵtx_{t+1}=\left(A x_{t}+u_{t}\right) \xi_{t}+\epsilon_{t}

for t=1,2,,Tt=1,2, \ldots, T. Here T2T \geqslant 2 is a fixed integer, AA is a real constant, xtx_{t} and utu_{t} are the position of the particle and control action at time tt, respectively, and (ξt,ϵt)t=1T\left(\xi_{t}, \epsilon_{t}\right)_{t=1}^{T} is a sequence of independent random vectors with

Eξt=Eϵt=0,var(ξt)=Vξ>0,var(ϵt)=Vϵ>0 and cov(ξt,ϵt)=0\mathbb{E} \xi_{t}=\mathbb{E} \epsilon_{t}=0, \operatorname{var}\left(\xi_{t}\right)=V_{\xi}>0, \operatorname{var}\left(\epsilon_{t}\right)=V_{\epsilon}>0 \text { and } \operatorname{cov}\left(\xi_{t}, \epsilon_{t}\right)=0

Find the optimal control, i.e. the control action utu_{t}, defined as a function of (x1,,xt;u1,,ut1)\left(x_{1}, \ldots, x_{t} ; u_{1}, \ldots, u_{t-1}\right), that minimizes

t=1Txt2+ct=1T1ut2\sum_{t=1}^{T} x_{t}^{2}+c \sum_{t=1}^{T-1} u_{t}^{2}

where c>0c>0 is given.

On which of VϵV_{\epsilon} and VξV_{\xi} does the optimal control depend?

Find the limiting form of the optimal control as TT \rightarrow \infty, and the minimal average cost per unit time.