Paper 3, Section II, C

Principles of Quantum Mechanics
Part II, 2017

The angular momentum operators J=(J1,J2,J3)\mathbf{J}=\left(J_{1}, J_{2}, J_{3}\right) obey the commutation relations

[J3,J±]=±J±[J+,J]=2J3\begin{aligned} &{\left[J_{3}, J_{\pm}\right]=\pm J_{\pm}} \\ &{\left[J_{+}, J_{-}\right]=2 J_{3}} \end{aligned}

where J±=J1±iJ2J_{\pm}=J_{1} \pm i J_{2}.

A quantum mechanical system involves the operators a,a,ba, a^{\dagger}, b and bb^{\dagger} such that

[a,a]=[b,b]=1[a,b]=[a,b]=[a,b]=[a,b]=0.\begin{gathered} {\left[a, a^{\dagger}\right]=\left[b, b^{\dagger}\right]=1} \\ {[a, b]=\left[a^{\dagger}, b\right]=\left[a, b^{\dagger}\right]=\left[a^{\dagger}, b^{\dagger}\right]=0 .} \end{gathered}

Define K+=ab,K=abK_{+}=a^{\dagger} b, K_{-}=a b^{\dagger} and K3=12(aabb)K_{3}=\frac{1}{2}\left(a^{\dagger} a-b^{\dagger} b\right). Show that K±K_{\pm}and K3K_{3} obey the same commutation relations as J±J_{\pm}and J3J_{3}.

Suppose that the system is in the state 0|0\rangle such that a0=b0=0a|0\rangle=b|0\rangle=0. Show that (a)20\left(a^{\dagger}\right)^{2}|0\rangle is an eigenstate of K3K_{3}. Let K2=12(K+K+KK+)+K32K^{2}=\frac{1}{2}\left(K_{+} K_{-}+K_{-} K_{+}\right)+K_{3}^{2}. Show that (a)20\left(a^{\dagger}\right)^{2}|0\rangle is an eigenstate of K2K^{2} and find the eigenvalue. How many other states do you expect to find with same value of K2K^{2} ? Find them.