Paper 1, Section II, 28 K28 \mathrm{~K}

Principles of Statistics
Part II, 2017

For a positive integer nn, we want to estimate the parameter pp in the binomial statistical model {Bin(n,p),p[0,1]}\{\operatorname{Bin}(n, p), p \in[0,1]\}, based on an observation XBin(n,p)X \sim \operatorname{Bin}(n, p).

(a) Compute the maximum likelihood estimator for pp. Show that the posterior distribution for pp under a uniform prior on [0,1][0,1] is Beta(a,b)\operatorname{Beta}(a, b), and specify aa and bb. [The p.d.f. of Beta(a,b)\operatorname{Beta}(a, b) is given by

fa,b(p)=(a+b1)!(a1)!(b1)!pa1(1p)b1.]\left.f_{a, b}(p)=\frac{(a+b-1) !}{(a-1) !(b-1) !} p^{a-1}(1-p)^{b-1} .\right]

(b) (i) For a risk function LL, define the risk of an estimator p^\hat{p} of pp, and the Bayes risk under a prior π\pi for pp.

(ii) Under the loss function

L(p^,p)=(p^p)2p(1p)L(\hat{p}, p)=\frac{(\hat{p}-p)^{2}}{p(1-p)}

find a Bayes optimal estimator for the uniform prior. Give its risk as a function of pp.

(iii) Give a minimax optimal estimator for the loss function LL given above. Justify your answer.