Paper 1, Section II, J
The Cambridge Lawn Tennis Club organises a tournament in which every match consists of 11 games, all of which are played. The player who wins 6 or more games is declared the winner.
For players and , let be the total number of games they play against each other, and let be the number of these games won by player . Let and be the corresponding number of matches.
A statistician analysed the tournament data using a Binomial Generalised Linear Model (GLM) with outcome . The probability that wins a game against is modelled by
with an appropriate corner point constraint. You are asked to re-analyse the data, but the game-level results have been lost and you only know which player won each match.
We define a new GLM for the outcomes with and , where the are defined in . That is, is the log-odds that wins a game against , not a match.
Derive the form of the new link function . [You may express your answer in terms of a cumulative distribution function.]