Paper 4, Section II, C

Applications of Quantum Mechanics
Part II, 2017

(a) In one dimension, a particle of mass mm is scattered by a potential V(x)V(x) where V(x)0V(x) \rightarrow 0 as x|x| \rightarrow \infty. For wavenumber k>0k>0, the incoming (I)(\mathcal{I}) and outgoing (O)(\mathcal{O}) asymptotic plane wave states with positive (+)(+) and negative ()(-) parity are given by

I+(x)=eikx,I(x)=sign(x)eikxO+(x)=e+ikx,O(x)=sign(x)e+ikx\begin{array}{rr} \mathcal{I}_{+}(x)=e^{-i k|x|}, & \mathcal{I}_{-}(x)=\operatorname{sign}(x) e^{-i k|x|} \\ \mathcal{O}_{+}(x)=e^{+i k|x|}, & \mathcal{O}_{-}(x)=-\operatorname{sign}(x) e^{+i k|x|} \end{array}

(i) Explain how this basis may be used to define the SS-matrix,

SP=(S++S+S+S)\mathcal{S}^{P}=\left(\begin{array}{cc} S_{++} & S_{+-} \\ S_{-+} & S_{--} \end{array}\right)

(ii) For what choice of potential would you expect S+=S+=0S_{+-}=S_{-+}=0 ? Why?

(b) The potential V(x)V(x) is given by

V(x)=V0[δ(xa)+δ(x+a)]V(x)=V_{0}[\delta(x-a)+\delta(x+a)]

with V0V_{0} a constant.

(i) Show that

S(k)=e2ika[(2kiU0)eika+iU0eika(2k+iU0)eikaiU0eika]S_{--}(k)=e^{-2 i k a}\left[\frac{\left(2 k-i U_{0}\right) e^{i k a}+i U_{0} e^{-i k a}}{\left(2 k+i U_{0}\right) e^{-i k a}-i U_{0} e^{i k a}}\right]

where U0=2mV0/2U_{0}=2 m V_{0} / \hbar^{2}. Verify that S2=1\left|S_{--}\right|^{2}=1. Explain the physical meaning of this result.

(ii) For V0<0V_{0}<0, by considering the poles or zeros of S(k)S_{--}(k), show that there exists one bound state of negative parity if aU0<1a U_{0}<-1.

(iii) For V0>0V_{0}>0 and aU01a U_{0} \gg 1, show that S(k)S_{--}(k) has a pole at

ka=π+αiγk a=\pi+\alpha-i \gamma

where α\alpha and γ\gamma are real and

α=πaU0+O(1(aU0)2) and γ=(πaU0)2+O(1(aU0)3)\alpha=-\frac{\pi}{a U_{0}}+O\left(\frac{1}{\left(a U_{0}\right)^{2}}\right) \quad \text { and } \quad \gamma=\left(\frac{\pi}{a U_{0}}\right)^{2}+O\left(\frac{1}{\left(a U_{0}\right)^{3}}\right)

Explain the physical significance of this result.