Paper 2, Section II, F

Topics In Analysis
Part II, 2017

State and prove Baire's category theorem for complete metric spaces. Give an example to show that it may fail if the metric space is not complete.

Let fn:[0,1]Rf_{n}:[0,1] \rightarrow \mathbb{R} be a sequence of continuous functions such that fn(x)f_{n}(x) converges for all x[0,1]x \in[0,1]. Show that if ϵ>0\epsilon>0 is fixed we can find an N0N \geqslant 0 and a non-empty open interval J[0,1]J \subseteq[0,1] such that fn(x)fm(x)ϵ\left|f_{n}(x)-f_{m}(x)\right| \leqslant \epsilon for all xJx \in J and all n,mNn, m \geqslant N.

Let g:[0,1]Rg:[0,1] \rightarrow \mathbb{R} be defined by

g(x)={1 if x is rational 0 if x is irrational. g(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational. }\end{cases}

Show that we cannot find continuous functions gn:[0,1]Rg_{n}:[0,1] \rightarrow \mathbb{R} with gn(x)g(x)g_{n}(x) \rightarrow g(x) for each x[0,1]x \in[0,1] as n.n \rightarrow \infty .

Define a sequence of continuous functions hn:[0,1]Rh_{n}:[0,1] \rightarrow \mathbb{R} and a discontinuous function h:[0,1]Rh:[0,1] \rightarrow \mathbb{R} with hn(x)h(x)h_{n}(x) \rightarrow h(x) for each x[0,1]x \in[0,1] as nn \rightarrow \infty.