Paper 4, Section II, 11F11 F

Topics In Analysis
Part II, 2017

(a) Suppose that γ:[0,1]C\gamma:[0,1] \rightarrow \mathbb{C} is continuous with γ(0)=γ(1)\gamma(0)=\gamma(1) and γ(t)0\gamma(t) \neq 0 for all t[0,1]t \in[0,1]. Show that if γ(0)=γ(0)exp(iθ0)\gamma(0)=|\gamma(0)| \exp \left(i \theta_{0}\right) (with θ0\theta_{0} real) we can define a continuous function θ:[0,1]R\theta:[0,1] \rightarrow \mathbb{R} such that θ(0)=θ0\theta(0)=\theta_{0} and γ(t)=γ(t)exp(iθ(t))\gamma(t)=|\gamma(t)| \exp (i \theta(t)). Hence define the winding number w(γ)=w(0,γ)w(\gamma)=w(0, \gamma) of γ\gamma around 0 .

(b) Show that w(γ)w(\gamma) can take any integer value.

(c) If γ1\gamma_{1} and γ2\gamma_{2} satisfy the requirements of the definition, and (γ1×γ2)(t)=γ1(t)γ2(t)\left(\gamma_{1} \times \gamma_{2}\right)(t)=\gamma_{1}(t) \gamma_{2}(t), show that

w(γ1×γ2)=w(γ1)+w(γ2)w\left(\gamma_{1} \times \gamma_{2}\right)=w\left(\gamma_{1}\right)+w\left(\gamma_{2}\right)

(d) If γ1\gamma_{1} and γ2\gamma_{2} satisfy the requirements of the definition and γ1(t)γ2(t)<γ1(t)\left|\gamma_{1}(t)-\gamma_{2}(t)\right|<\left|\gamma_{1}(t)\right| for all t[0,1]t \in[0,1], show that

w(γ1)=w(γ2)w\left(\gamma_{1}\right)=w\left(\gamma_{2}\right)

(e) State and prove a theorem that says that winding number is unchanged under an appropriate homotopy.