Paper 3, Section II, 11H11 \mathrm{H} Automata and formal languages

Automata and Formal Languages
Part II, 2017

(a) Given A,BNA, B \subseteq \mathbb{N}, define a many-one reduction of AA to BB. Show that if BB is recursively enumerable (r.e.) and AmBA \leqslant_{m} B then AA is also recursively enumerable.

(b) State the smns-m-n theorem, and use it to prove that a set XNX \subseteq \mathbb{N} is r.e. if and only if XmKX \leqslant_{m} \mathbb{K}.

(c) Consider the sets of integers P,QNP, Q \subseteq \mathbb{N} defined via

P:={nNn codes a program and Wn is finite }Q:={nNn codes a program and Wn is recursive }\begin{aligned} &P:=\left\{n \in \mathbb{N} \mid n \text { codes a program and } W_{n} \text { is finite }\right\} \\ &Q:=\left\{n \in \mathbb{N} \mid n \text { codes a program and } W_{n} \text { is recursive }\right\} \end{aligned}

Show that PmQP \leqslant \leqslant_{m} Q.