Paper 2, Section I, E

Classical Dynamics
Part II, 2017

Derive the Lagrange equations from the principle of stationary action

S[q]=t0t1L(qi(t),q˙i(t),t)dt,δS=0S[q]=\int_{t_{0}}^{t_{1}} \mathcal{L}\left(q_{i}(t), \dot{q}_{i}(t), t\right) d t, \quad \delta S=0

where the end points qi(t0)q_{i}\left(t_{0}\right) and qi(t1)q_{i}\left(t_{1}\right) are fixed.

Let ϕ\phi and A\mathbf{A} be a scalar and a vector, respectively, depending on r=(x,y,z)\mathbf{r}=(x, y, z). Consider the Lagrangian

L=mr˙22(ϕr˙A)\mathcal{L}=\frac{m \dot{\mathbf{r}}^{2}}{2}-(\phi-\dot{\mathbf{r}} \cdot \mathbf{A})

and show that the resulting Euler-Lagrange equations are invariant under the transformations

ϕϕ+αFt,AA+F,\phi \rightarrow \phi+\alpha \frac{\partial F}{\partial t}, \quad \mathbf{A} \rightarrow \mathbf{A}+\nabla F,

where F=F(r,t)F=F(\mathbf{r}, t) is an arbitrary function, and α\alpha is a constant which should be determined.