Paper 4, Section I, E

Classical Dynamics
Part II, 2017

Consider the Poisson bracket structure on R3\mathbb{R}^{3} given by

{x,y}=z,{y,z}=x,{z,x}=y\{x, y\}=z, \quad\{y, z\}=x, \quad\{z, x\}=y

and show that {f,ρ2}=0\left\{f, \rho^{2}\right\}=0, where ρ2=x2+y2+z2\rho^{2}=x^{2}+y^{2}+z^{2} and f:R3Rf: \mathbb{R}^{3} \rightarrow \mathbb{R} is any polynomial function on R3\mathbb{R}^{3}.

Let H=(Ax2+By2+Cz2)/2H=\left(A x^{2}+B y^{2}+C z^{2}\right) / 2, where A,B,CA, B, C are positive constants. Find the explicit form of Hamilton's equations

r˙={r,H}, where r=(x,y,z)\dot{\mathbf{r}}=\{\mathbf{r}, H\}, \quad \text { where } \quad \mathbf{r}=(x, y, z)

Find a condition on A,B,CA, B, C such that the oscillation described by

x=1+α(t),y=β(t),z=γ(t)x=1+\alpha(t), \quad y=\beta(t), \quad z=\gamma(t)

is linearly unstable, where α(t),β(t),γ(t)\alpha(t), \beta(t), \gamma(t) are small.