Paper 1, Section II, G

Coding \& Cryptography
Part II, 2017

Let CC be a binary linear code. Explain what it means for CC to have length nn and rankk\operatorname{rank} k. Explain what it means for a codeword of CC to have weight jj.

Suppose CC has length nn, rank kk, and AjA_{j} codewords of weight jj. The weight enumerator polynomial of CC is given by

WC(s,t)=j=0nAjsjtnjW_{C}(s, t)=\sum_{j=0}^{n} A_{j} s^{j} t^{n-j}

What is WC(1,1)?W_{C}(1,1) ? Prove that WC(s,t)=WC(t,s)W_{C}(s, t)=W_{C}(t, s) if and only if WC(1,0)=1W_{C}(1,0)=1.

Define the dual code CC^{\perp} of CC.

(i) Let yF2n\mathbf{y} \in \mathbb{F}_{2}^{n}. Show that

xC(1)xy={2k, if yC0, otherwise \sum_{\mathbf{x} \in C}(-1)^{\mathbf{x} \cdot \mathbf{y}}= \begin{cases}2^{k}, & \text { if } \mathbf{y} \in C^{\perp} \\ 0, & \text { otherwise }\end{cases}

(ii) Extend the definition of weight to give a weight w(y)w(\mathbf{y}) for yF2n\mathbf{y} \in \mathbb{F}_{2}^{n}. Suppose that for tt real and all xC\mathbf{x} \in C

yF2ntw(y)(1)xy=(1t)w(x)(1+t)nw(x)\sum_{\mathbf{y} \in \mathbb{F}_{2}^{n}} t^{w(\mathbf{y})}(-1)^{\mathbf{x} \cdot \mathbf{y}}=(1-t)^{w(\mathbf{x})}(1+t)^{n-w(\mathbf{x})}

For ss real, by evaluating

xC(yF2n(1)xy(st)w(y))\sum_{\mathbf{x} \in C}\left(\sum_{\mathbf{y} \in \mathbb{F}_{2}^{n}}(-1)^{\mathbf{x} \cdot \mathbf{y}}\left(\frac{s}{t}\right)^{w(\mathbf{y})}\right)

in two different ways, show that

WC(s,t)=2kWC(ts,t+s).W_{C^{\perp}}(s, t)=2^{-k} W_{C}(t-s, t+s) .