Paper 2, Section II, G

Coding \& Cryptography
Part II, 2017

Define the entropy, H(X)H(X), of a random variable XX. State and prove Gibbs' inequality.

Hence, or otherwise, show that H(p1,p2,p3)H(p1,1p1)+(1p1)H\left(p_{1}, p_{2}, p_{3}\right) \leqslant H\left(p_{1}, 1-p_{1}\right)+\left(1-p_{1}\right) and determine when equality occurs.

Show that the Discrete Memoryless Channel with channel matrix

(1αβαβα1αββ)\left(\begin{array}{ccc} 1-\alpha-\beta & \alpha & \beta \\ \alpha & 1-\alpha-\beta & \beta \end{array}\right)

has capacity C=(1β)(1log(1β))+(1αβ)log(1αβ)+αlogαC=(1-\beta)(1-\log (1-\beta))+(1-\alpha-\beta) \log (1-\alpha-\beta)+\alpha \log \alpha.