Paper 1, Section II, C

Cosmology
Part II, 2017

The evolution of a flat (k=0)(k=0) homogeneous and isotropic universe with scale factor a(t)a(t), mass density ρ(t)\rho(t) and pressure P(t)P(t) obeys the Friedmann and energy conservation equations

H2(t)=(a˙a)2=8πG3ρ+Λc23ρ˙=3a˙a(ρ+P/c2)\begin{array}{r} H^{2}(t)=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho+\frac{\Lambda c^{2}}{3} \\ \dot{\rho}=-3 \frac{\dot{a}}{a}\left(\rho+P / c^{2}\right) \end{array}

where H(t)H(t) is the Hubble parameter (observed today t=t0t=t_{0} with value H0=H(t0)H_{0}=H\left(t_{0}\right) ) and Λ>0\Lambda>0 is the cosmological constant.

Use these two equations to derive the acceleration equation

a¨a=4πG3(ρ+3P/c2)+Λc23\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}\left(\rho+3 P / c^{2}\right)+\frac{\Lambda c^{2}}{3}

For pressure-free matter (ρ=ρM\left(\rho=\rho_{\mathrm{M}}\right. and PM=0)\left.P_{\mathrm{M}}=0\right), solve the energy conservation equation to show that the Friedmann and acceleration equations can be re-expressed as

H=H0ΩMa3+ΩΛa¨a=H022[ΩMa32ΩΛ]\begin{gathered} H=H_{0} \sqrt{\frac{\Omega_{\mathrm{M}}}{a^{3}}+\Omega_{\Lambda}} \\ \frac{\ddot{a}}{a}=-\frac{H_{0}^{2}}{2}\left[\frac{\Omega_{\mathrm{M}}}{a^{3}}-2 \Omega_{\Lambda}\right] \end{gathered}

where we have taken a(t0)=1a\left(t_{0}\right)=1 and we have defined the relative densities today (t=t0)\left(t=t_{0}\right) as

ΩM=8πG3H02ρM(t0) and ΩΛ=Λc23H02\Omega_{\mathrm{M}}=\frac{8 \pi G}{3 H_{0}^{2}} \rho_{\mathrm{M}}\left(t_{0}\right) \quad \text { and } \quad \Omega_{\Lambda}=\frac{\Lambda c^{2}}{3 H_{0}^{2}}

Solve the Friedmann equation and show that the scale factor can be expressed as

a(t)=(ΩMΩΛ)1/3sinh2/3(32ΩΛH0t)a(t)=\left(\frac{\Omega_{\mathrm{M}}}{\Omega_{\Lambda}}\right)^{1 / 3} \sinh ^{2 / 3}\left(\frac{3}{2} \sqrt{\Omega_{\Lambda}} H_{0} t\right)

Find an expression for the time tˉ\bar{t} at which the matter density ρM\rho_{\mathrm{M}} and the effective density caused by the cosmological constant Λ\Lambda are equal. (You need not evaluate this explicitly.)