Paper 1, Section II, A

Dynamical Systems
Part II, 2017

Consider the dynamical system

x˙=x+x3+βxy2y˙=y+βx2y+y3\begin{aligned} &\dot{x}=-x+x^{3}+\beta x y^{2} \\ &\dot{y}=-y+\beta x^{2} y+y^{3} \end{aligned}

where β>1\beta>-1 is a constant.

(a) Find the fixed points of the system, and classify them for β1\beta \neq 1.

Sketch the phase plane for each of the cases (i) β=12\beta=\frac{1}{2} (ii) β=2\beta=2 and (iii) β=1\beta=1.

(b) Given β>2\beta>2, show that the domain of stability of the origin includes the union over kRk \in \mathbb{R} of the regions

x2+k2y2<4k2(1+k2)(β1)β2(1+k2)24k2.x^{2}+k^{2} y^{2}<\frac{4 k^{2}\left(1+k^{2}\right)(\beta-1)}{\beta^{2}\left(1+k^{2}\right)^{2}-4 k^{2}} .

By considering k1k \gg 1, or otherwise, show that more information is obtained from the union over kk than considering only the case k=1k=1.

[\left[\right. Hint: If B>A,CB>A, C then maxu[0,1]{Au2+2Bu(1u)+C(1u)2}=B2AC2BAC]\left.\max _{u \in[0,1]}\left\{A u^{2}+2 B u(1-u)+C(1-u)^{2}\right\}=\frac{B^{2}-A C}{2 B-A-C} \cdot\right]