Paper 1, Section II, B
Fluid of density and dynamic viscosity occupies the region in Cartesian coordinates . A semi-infinite, dense array of cilia occupy the half plane , and apply a stress in the -direction on the adjacent fluid, working at a constant and uniform rate per unit area, which causes the fluid to move with steady velocity . Give a careful physical explanation of the boundary condition
paying particular attention to signs, where is the kinematic viscosity of the fluid. Why would you expect the fluid motion to be confined to a thin region near for sufficiently large values of ?
Write down the viscous-boundary-layer equations governing the thin region of fluid motion. Show that the flow can be approximated by a stream function
Determine the functions and . Show that the dimensionless function satisfies
What boundary conditions must be satisfied by ? By considering how the volume flux varies with downstream location , or otherwise, determine (with justification) the sign of the transverse flow .