Paper 2, Section I, E

Further Complex Methods
Part II, 2017

Euler's formula for the Gamma function is

Γ(z)=1zn=1(1+1n)z(1+zn)1\Gamma(z)=\frac{1}{z} \prod_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{z}\left(1+\frac{z}{n}\right)^{-1}

Use Euler's formula to show

Γ(2z)22zΓ(z)Γ(z+12)=C\frac{\Gamma(2 z)}{2^{2 z} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right)}=C

where CC is a constant.

Evaluate CC.

[Hint: You may use Γ(z)Γ(1z)=π/sin(πz).]\Gamma(z) \Gamma(1-z)=\pi / \sin (\pi z) .]