Paper 2, Section II, D

General Relativity
Part II, 2017

(a) The Friedmann-Robertson-Walker metric is given by

ds2=dt2+a2(t)[dr21kr2+r2(dθ2+sin2θdϕ2)]d s^{2}=-d t^{2}+a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]

where k=1,0,+1k=-1,0,+1 and a(t)a(t) is the scale factor.

For k=+1k=+1, show that this metric can be written in the form

ds2=dt2+γijdxidxj=dt2+a2(t)[dχ2+sin2χ(dθ2+sin2θdϕ2)]d s^{2}=-d t^{2}+\gamma_{i j} d x^{i} d x^{j}=-d t^{2}+a^{2}(t)\left[d \chi^{2}+\sin ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]

Calculate the equatorial circumference (θ=π/2)(\theta=\pi / 2) of the submanifold defined by constant tt and χ\chi.

Calculate the proper volume, defined by detγd3x\int \sqrt{\operatorname{det} \gamma} d^{3} x, of the hypersurface defined by constant tt.

(b) The Friedmann equations are

3(a˙2+ka2)Λ=8πρ,2aa¨+a˙2+ka2Λ=8πP,\begin{aligned} &3\left(\frac{\dot{a}^{2}+k}{a^{2}}\right)-\Lambda=8 \pi \rho, \\ &\frac{2 a \ddot{a}+\dot{a}^{2}+k}{a^{2}}-\Lambda=-8 \pi P, \end{aligned}

where ρ(t)\rho(t) is the energy density, P(t)P(t) is the pressure, Λ\Lambda is the cosmological constant and dot denotes d/dtd / d t.

The Einstein static universe has vanishing pressure, P(t)=0P(t)=0. Determine a,ka, k and Λ\Lambda as a function of the density ρ\rho.

The Einstein static universe with a=a0a=a_{0} and ρ=ρ0\rho=\rho_{0} is perturbed by radiation such that

a=a0+δa(t),ρ=ρ0+δρ(t),P=13δρ(t)a=a_{0}+\delta a(t), \quad \rho=\rho_{0}+\delta \rho(t), \quad P=\frac{1}{3} \delta \rho(t)

where δaa0\delta a \ll a_{0} and δρρ0\delta \rho \ll \rho_{0}. Show that the Einstein static universe is unstable to this perturbation.