Paper 4, Section II, D

General Relativity
Part II, 2017

(a) In the transverse traceless gauge, a plane gravitational wave propagating in the zz direction is described by a perturbation hαβh_{\alpha \beta} of the Minkowski metric ηαβ=\eta_{\alpha \beta}= diag(1,1,1,1)\operatorname{diag}(-1,1,1,1) in Cartesian coordinates xα=(t,x,y,z)x^{\alpha}=(t, x, y, z), where

hαβ=Hαβeikμxμ, where kμ=ω(1,0,0,1)h_{\alpha \beta}=H_{\alpha \beta} e^{i k_{\mu} x^{\mu}}, \quad \text { where } \quad k^{\mu}=\omega(1,0,0,1)

and HαβH_{\alpha \beta} is a constant matrix. Spacetime indices in this question are raised or lowered with the Minkowski metric.

The energy-momentum tensor of a gravitational wave is defined to be

τμν=132π(μhαβ)(νhαβ)\tau_{\mu \nu}=\frac{1}{32 \pi}\left(\partial_{\mu} h^{\alpha \beta}\right)\left(\partial_{\nu} h_{\alpha \beta}\right)

Show that ντμν=12μτνν\partial^{\nu} \tau_{\mu \nu}=\frac{1}{2} \partial_{\mu} \tau_{\nu}^{\nu} and hence, or otherwise, show that energy and momentum are conserved.

(b) A point mass mm undergoes harmonic motion along the zz-axis with frequency ω\omega and amplitude LL. Compute the energy flux emitted in gravitational radiation.

[Hint: The quadrupole formula for time-averaged energy flux radiated in gravitational waves is

\left\langle\frac{d E}{d t}\right\rangle=\frac{1}{5}\left\langle\dddot{Q}_{i j} \dddot{Q}_{i j}\right\rangle

where QijQ_{i j} is the reduced quadrupole tensor.]