Paper 4, Section II, H
Part II, 2017
Let be a graph of maximum degree . Show the following:
(i) Every eigenvalue of satisfies .
(ii) If is regular then is an eigenvalue.
(iii) If is regular and connected then the multiplicity of as an eigenvalue is 1 .
(iv) If is regular and not connected then the multiplicity of as an eigenvalue is greater than 1 .
Let be the adjacency matrix of the Petersen graph. Explain why , where is the identity matrix and is the all-1 matrix. Find, with multiplicities, the eigenvalues of the Petersen graph.