Paper 3, Section II, A

Integrable Systems
Part II, 2017

Let u=u(x,t)u=u(x, t) be a smooth solution to the KdV\mathrm{KdV} equation

ut+uxxx6uux=0u_{t}+u_{x x x}-6 u u_{x}=0

which decays rapidly as x|x| \rightarrow \infty and let L=x2+uL=-\partial_{x}^{2}+u be the associated Schrödinger operator. You may assume LL and A=4x33(ux+xu)A=4 \partial_{x}^{3}-3\left(u \partial_{x}+\partial_{x} u\right) constitute a Lax pair for KdV.

Consider a solution to Lφ=k2φL \varphi=k^{2} \varphi which has the asymptotic form

φ(x,k,t)={eikx, as xa(k,t)eikx+b(k,t)eikx, as x+\varphi(x, k, t)= \begin{cases}e^{-\mathrm{i} k x}, & \text { as } x \rightarrow-\infty \\ a(k, t) e^{-\mathrm{i} k x}+b(k, t) e^{\mathrm{i} k x}, & \text { as } x \rightarrow+\infty\end{cases}

Find evolution equations for aa and bb. Deduce that a(k,t)a(k, t) is tt-independent.

By writing φ\varphi in the form

φ(x,k,t)=exp[ikx+xS(y,k,t)dy],S(x,k,t)=n=1Sn(x,t)(2ik)n\varphi(x, k, t)=\exp \left[-\mathrm{i} k x+\int_{-\infty}^{x} S(y, k, t) \mathrm{d} y\right], \quad S(x, k, t)=\sum_{n=1}^{\infty} \frac{S_{n}(x, t)}{(2 \mathrm{i} k)^{n}}

show that

a(k,t)=exp[S(x,k,t)dx]a(k, t)=\exp \left[\int_{-\infty}^{\infty} S(x, k, t) \mathrm{d} x\right]

Deduce that {Sn(x,t)dx}n=1\left\{\int_{-\infty}^{\infty} S_{n}(x, t) \mathrm{d} x\right\}_{n=1}^{\infty} are first integrals of KdV.

By writing a differential equation for S=X+iYS=X+\mathrm{i} Y (with X,YX, Y real), show that these first integrals are trivial when nn is even.