Paper 1, Section II, F

Linear Analysis
Part II, 2017

Let XX be a normed vector space over the real numbers.

(a) Define the dual space XX^{*} of XX and prove that XX^{*} is a Banach space. [You may use without proof that XX^{*} is a vector space.]

(b) The Hahn-Banach theorem states the following. Let XX be a real vector space, and let p:XRp: X \rightarrow \mathbb{R} be sublinear, i.e., p(x+y)p(x)+p(y)p(x+y) \leqslant p(x)+p(y) and p(λx)=λp(x)p(\lambda x)=\lambda p(x) for all x,yXx, y \in X and all λ>0\lambda>0. Let YXY \subset X be a linear subspace, and let g:YRg: Y \rightarrow \mathbb{R} be linear and satisfy g(y)p(y)g(y) \leqslant p(y) for all yYy \in Y. Then there exists a linear functional f:XRf: X \rightarrow \mathbb{R} such that f(x)p(x)f(x) \leqslant p(x) for all xXx \in X and fY=g\left.f\right|_{Y}=g.

Using the Hahn-Banach theorem, prove that for any non-zero x0Xx_{0} \in X there exists fXf \in X^{*} such that f(x0)=x0f\left(x_{0}\right)=\left\|x_{0}\right\| and f=1\|f\|=1.

(c) Show that XX can be embedded isometrically into a Banach space, i.e. find a Banach space YY and a linear map Φ:XY\Phi: X \rightarrow Y with Φ(x)=x\|\Phi(x)\|=\|x\| for all xXx \in X.