Paper 1, Section I, B

Mathematical Biology
Part II, 2017

A model of insect dispersal and growth in one spatial dimension is given by

Nt=Dx(N2Nx)+αN,N(x,0)=N0δ(x),\frac{\partial N}{\partial t}=D \frac{\partial}{\partial x}\left(N^{2} \frac{\partial N}{\partial x}\right)+\alpha N, \quad N(x, 0)=N_{0} \delta(x),

where α,D\alpha, D and N0N_{0} are constants, D>0D>0, and α\alpha may be positive or negative.

By setting N(x,t)=R(x,τ)eαtN(x, t)=R(x, \tau) e^{\alpha t}, where τ(t)\tau(t) is some time-like variable satisfying τ(0)=0\tau(0)=0, show that a suitable choice of τ\tau yields

Rτ=(R2Rx)x,R(x,0)=N0δ(x)R_{\tau}=\left(R^{2} R_{x}\right)_{x}, \quad R(x, 0)=N_{0} \delta(x)

where subscript denotes differentiation with respect to xx or τ\tau.

Consider a similarity solution of the form R(x,τ)=F(ξ)/τ14R(x, \tau)=F(\xi) / \tau^{\frac{1}{4}} where ξ=x/τ14\xi=x / \tau^{\frac{1}{4}}. Show that FF must satisfy

14(Fξ)=(F2F) and +F(ξ)dξ=N0-\frac{1}{4}(F \xi)^{\prime}=\left(F^{2} F^{\prime}\right)^{\prime} \quad \text { and } \quad \int_{-\infty}^{+\infty} F(\xi) d \xi=N_{0}

[You may use the fact that these are solved by

F(ξ)={12ξ02ξ2 for ξ<ξ00 otherwise F(\xi)= \begin{cases}\frac{1}{2} \sqrt{\xi_{0}^{2}-\xi^{2}} & \text { for }|\xi|<\xi_{0} \\ 0 & \text { otherwise }\end{cases}

where ξ0=4N0/π.]\left.\xi_{0}=\sqrt{4 N_{0} / \pi} .\right]

For α<0\alpha<0, what is the maximum distance from the origin that insects ever reach? Give your answer in terms of D,αD, \alpha and N0N_{0}.