Paper 4, Section II,
Part II, 2018
Consider the deterministic system
where and are scalars. Here is the state variable and the control variable is to be chosen to minimise, for a fixed , the cost
where is known and for all . Let be the minimal cost from state and time .
(a) By writing the dynamic programming equation in infinitesimal form and taking the appropriate limit show that satisfies
with boundary condition .
(b) Determine the form of the optimal control in the special case where is constant, and also in general.