Paper 3, Section II, K

Optimisation and Control
Part II, 2018

The scalars xt,yt,utx_{t}, y_{t}, u_{t} are related by the equations

xt=xt1+ut1,yt=xt1+ηt1,t=1,2,,T,x_{t}=x_{t-1}+u_{t-1}, \quad y_{t}=x_{t-1}+\eta_{t-1}, \quad t=1,2, \ldots, T,

where the initial state x0x_{0} is normally distributed with mean x^0\hat{x}_{0} and variance 1 and {ηt}\left\{\eta_{t}\right\} is a sequence of independent random variables each normally distributed with mean 0 and variance 1 . The control variable utu_{t} is to be chosen at time tt on the basis of information WtW_{t}, where W0=(x^0)W_{0}=\left(\hat{x}_{0}\right) and

Wt=(x^0,u0,,ut1,y1,,yt),t=1,2,,TW_{t}=\left(\hat{x}_{0}, u_{0}, \ldots, u_{t-1}, y_{1}, \ldots, y_{t}\right), \quad t=1,2, \ldots, T

(a) Let x^1,x^2,,x^T\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{T} be the Kalman filter estimates of x1,x2,,xTx_{1}, x_{2}, \ldots, x_{T}, i.e.

x^t=x^t1+ut1+ht(ytx^t1)\hat{x}_{t}=\hat{x}_{t-1}+u_{t-1}+h_{t}\left(y_{t}-\hat{x}_{t-1}\right)

where hth_{t} is chosen to minimise E((x^txt)2Wt)\mathbb{E}\left(\left(\hat{x}_{t}-x_{t}\right)^{2} \mid W_{t}\right). Calculate hth_{t} and show that, conditional on Wt,xtW_{t}, x_{t} is normally distributed with mean x^t\hat{x}_{t} and variance Vt=1/(1+t)V_{t}=1 /(1+t).

(b) Define

F(WT)=E(xT2WT), and F(Wt)=infut,,uT1E(xT2+j=tT1uj2Wt),t=0,,T1.\begin{aligned} &F\left(W_{T}\right)=\mathbb{E}\left(x_{T}^{2} \mid W_{T}\right), \quad \text { and } \\ &F\left(W_{t}\right)=\inf _{u_{t}, \ldots, u_{T-1}} \mathbb{E}\left(x_{T}^{2}+\sum_{j=t}^{T-1} u_{j}^{2} \mid W_{t}\right), \quad t=0, \ldots, T-1 . \end{aligned}

Show that F(Wt)=x^t2Pt+dtF\left(W_{t}\right)=\hat{x}_{t}^{2} P_{t}+d_{t}, where Pt=1/(Tt+1),dT=1/(1+T)P_{t}=1 /(T-t+1), d_{T}=1 /(1+T) and dt1=Vt1VtPt+dtd_{t-1}=V_{t-1} V_{t} P_{t}+d_{t}.

(c) Show that the minimising control utu_{t} can be expressed in the form ut=Ktx^tu_{t}=-K_{t} \hat{x}_{t} and find KtK_{t}. How would the expression for KtK_{t} be altered if x0x_{0} or {ηt}\left\{\eta_{t}\right\} had variances other than 1?