Paper 3, Section II, D

Principles of Quantum Mechanics
Part II, 2018

A quantum system is prepared in the ground state 0|0\rangle at time t=0t=0. It is subjected to a time-varying Hamiltonian H=H0+Δ(t)H=H_{0}+\Delta(t). Show that, to first order in Δ(t)\Delta(t), the system evolves as

ψ(t)=kck(t)eiEkt/k|\psi(t)\rangle=\sum_{k} c_{k}(t) \mathrm{e}^{-i E_{k} t / \hbar}|k\rangle

where H0k=EkkH_{0}|k\rangle=E_{k}|k\rangle and

ck(t)=1i0tkΔ(t)0ei(EkE0)t/dtc_{k}(t)=\frac{1}{i \hbar} \int_{0}^{t}\left\langle k\left|\Delta\left(t^{\prime}\right)\right| 0\right\rangle \mathrm{e}^{i\left(E_{k}-E_{0}\right) t^{\prime} / \hbar} \mathrm{d} t^{\prime}

A large number of hydrogen atoms, each in the ground state, are subjected to an electric field

E(t)={0 for t<0z^E0exp(t/τ) for t>0\mathbf{E}(t)=\left\{\begin{array}{lll} 0 & \text { for } & t<0 \\ \hat{\mathbf{z}} \mathcal{E}_{0} \exp (-t / \tau) & \text { for } & t>0 \end{array}\right.

where E0\mathcal{E}_{0} is a constant. Show that the fraction of atoms found in the state n,,m=|n, \ell, m\rangle= 2,1,0|2,1,0\rangle is, after a long time and to lowest non-trivial order in E0\mathcal{E}_{0},

215310a02e2E022(ω2+1/τ2)\frac{2^{15}}{3^{10}} \frac{a_{0}^{2} e^{2} \mathcal{E}_{0}^{2}}{\hbar^{2}\left(\omega^{2}+1 / \tau^{2}\right)}

where ω\hbar \omega is the energy difference between the 2,1,0|2,1,0\rangle and 1,0,0|1,0,0\rangle states, and ee is the electron charge and a0a_{0} the Bohr radius. What fraction of atoms lie in the 2,0,0|2,0,0\rangle state?

[Hint: You may assume the hydrogenic wavefunctions

r1,0,0=24π1a03/2exp(ra0) and r2,1,0=14π1(2a0)3/2ra0cosθexp(r2a0)\langle\mathbf{r} \mid 1,0,0\rangle=\frac{2}{\sqrt{4 \pi}} \frac{1}{a_{0}^{3 / 2}} \exp \left(-\frac{r}{a_{0}}\right) \quad \text { and } \quad\langle\mathbf{r} \mid 2,1,0\rangle=\frac{1}{\sqrt{4 \pi}} \frac{1}{\left(2 a_{0}\right)^{3 / 2}} \frac{r}{a_{0}} \cos \theta \exp \left(-\frac{r}{2 a_{0}}\right)

and the integral

0rmeαr dr=m!αm+1\int_{0}^{\infty} r^{m} \mathrm{e}^{-\alpha r} \mathrm{~d} r=\frac{m !}{\alpha^{m+1}}

for mm a positive integer.]