Paper 1, Section II,
A scientist wishes to estimate the proportion of presence of a gene in a population of flies of size . Every fly receives a chromosome from each of its two parents, each carrying the gene with probability or the gene with probability , independently. The scientist can observe if each fly has two copies of the gene A (denoted by AA), two copies of the gene (denoted by BB) or one of each (denoted by AB). We let , and denote the number of each observation among the flies.
(a) Give the probability of each observation as a function of , denoted by , for all three values , or .
(b) For a vector , we let denote the estimator defined by
Find the unique vector such that is unbiased. Show that is a consistent estimator of .
(c) Compute the maximum likelihood estimator of in this model, denoted by . Find the limiting distribution of . [You may use results from the course, provided that you state them clearly.]