Paper 2, Section II, J

Probability and Measure
Part II, 2018

Let (Ω,F,P)(\Omega, \mathcal{F}, \mathbb{P}) be a probability space. Let (Xn)n1\left(X_{n}\right)_{n \geqslant 1} be a sequence of random variables with E(Xn2)1\mathbb{E}\left(\left|X_{n}\right|^{2}\right) \leqslant 1 for all n1n \geqslant 1.

(a) Suppose ZZ is another random variable such that E(Z2)<\mathbb{E}\left(|Z|^{2}\right)<\infty. Why is ZXnZ X_{n} integrable for each nn ?

(b) Assume E(ZXn)n0\mathbb{E}\left(Z X_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 for every random variable ZZ on (Ω,F,P)(\Omega, \mathcal{F}, \mathbb{P}) such that E(Z2)<\mathbb{E}\left(|Z|^{2}\right)<\infty. Show that there is a subsequence Yk:=Xnk,k1Y_{k}:=X_{n_{k}}, k \geqslant 1, such that

1Nk=1NYkN0 in L2\frac{1}{N} \sum_{k=1}^{N} Y_{k} \underset{N \rightarrow \infty}{\longrightarrow} 0 \text { in } \mathbb{L}^{2}

(c) Assume that XnXX_{n} \rightarrow X in probability. Show that XL2X \in \mathbb{L}^{2}. Show that XnXX_{n} \rightarrow X in L1\mathbb{L}^{1}. Must it converge also in L2?\mathbb{L}^{2} ? Justify your answer.

(d) Assume that the (Xn)n1\left(X_{n}\right)_{n \geqslant 1} are independent. Give a necessary and sufficient condition on the sequence (E(Xn)n1)\left(\mathbb{E}\left(X_{n}\right)_{n \geqslant 1}\right) for the sequence

YN=1Nk=1NXkY_{N}=\frac{1}{N} \sum_{k=1}^{N} X_{k}

to converge in L2\mathbb{L}^{2}.