Paper 3, Section II, A

Applications of Quantum Mechanics
Part II, 2018

A beam of particles of mass mm and momentum p=kp=\hbar k is incident along the zz-axis. The beam scatters off a spherically symmetric potential V(r)V(r). Write down the asymptotic form of the wavefunction in terms of the scattering amplitude f(θ)f(\theta).

The incoming plane wave and the scattering amplitude can be expanded in partial waves as,

eikrcosθ12ikrl=0(2l+1)(eikr(1)leikr)Pl(cosθ)f(θ)=l=02l+1kflPl(cosθ)\begin{gathered} e^{i k r \cos \theta} \sim \frac{1}{2 i k r} \sum_{l=0}^{\infty}(2 l+1)\left(e^{i k r}-(-1)^{l} e^{-i k r}\right) P_{l}(\cos \theta) \\ f(\theta)=\sum_{l=0}^{\infty} \frac{2 l+1}{k} f_{l} P_{l}(\cos \theta) \end{gathered}

where PlP_{l} are Legendre polynomials. Define the SS-matrix. Assuming that the S-matrix is unitary, explain why we can write

fl=eiδlsinδlf_{l}=e^{i \delta_{l}} \sin \delta_{l}

for some real phase shifts δl\delta_{l}. Obtain an expression for the total cross-section σT\sigma_{T} in terms of the phase shifts δl\delta_{l}.

[Hint: You may use the orthogonality of Legendre polynomials:

1+1dwPl(w)Pl(w)=22l+1δll.]\left.\int_{-1}^{+1} d w P_{l}(w) P_{l^{\prime}}(w)=\frac{2}{2 l+1} \delta_{l l^{\prime}} .\right]

Consider the repulsive, spherical potential

V(r)={+V0r<a0r>aV(r)=\left\{\begin{array}{cc} +V_{0} & r<a \\ 0 & r>a \end{array}\right.

where V0=2γ2/2mV_{0}=\hbar^{2} \gamma^{2} / 2 m. By considering the s-wave solution to the Schrödinger equation, show that

tan(ka+δ0)ka=tanh(γ2k2a)γ2k2a\frac{\tan \left(k a+\delta_{0}\right)}{k a}=\frac{\tanh \left(\sqrt{\gamma^{2}-k^{2}} a\right)}{\sqrt{\gamma^{2}-k^{2}} a}

For low momenta, ka1k a \ll 1, compute the s-wave contribution to the total cross-section. Comment on the physical interpretation of your result in the limit γa\gamma a \rightarrow \infty.