Paper 3, Section II, I
Part II, 2018
State the row orthogonality relations. Prove that if is an irreducible character of the finite group , then divides the order of .
Stating clearly any additional results you use, deduce the following statements:
(i) Groups of order , where is prime, are abelian.
(ii) If is a group of order , where is prime, then either the degrees of the irreducible characters of are all 1 , or they are
(iii) No simple group has an irreducible character of degree 2 .
(iv) Let and be prime numbers with , and let be a non-abelian group of order . Then divides and has conjugacy classes.