Paper 4, Section II, A

Statistical Physics
Part II, 2018

The one-dimensional Ising model consists of a set of NN spins sis_{i} with Hamiltonian

H=Ji=1Nsisi+1B2i=1N(si+si+1)H=-J \sum_{i=1}^{N} s_{i} s_{i+1}-\frac{B}{2} \sum_{i=1}^{N}\left(s_{i}+s_{i+1}\right)

where periodic boundary conditions are imposed so sN+1=s1s_{N+1}=s_{1}. Here JJ is a positive coupling constant and BB is an external magnetic field. Define a 2×22 \times 2 matrix MM with elements

Mst=exp[βJst+βB2(s+t)]M_{s t}=\exp \left[\beta J s t+\frac{\beta B}{2}(s+t)\right]

where indices s,ts, t take values ±1\pm 1 and β=(kT)1\beta=(k T)^{-1} with kk Boltzmann's constant and TT temperature.

(a) Prove that the partition function of the Ising model can be written as

Z=Tr(MN)Z=\operatorname{Tr}\left(M^{N}\right)

Calculate the eigenvalues of MM and hence determine the free energy in the thermodynamic limit NN \rightarrow \infty. Explain why the Ising model does not exhibit a phase transition in one dimension.

(b) Consider the case of zero magnetic field B=0B=0. The correlation function sisj\left\langle s_{i} s_{j}\right\rangle is defined by

sisj=1Z{sk}sisjeβH\left\langle s_{i} s_{j}\right\rangle=\frac{1}{Z} \sum_{\left\{s_{k}\right\}} s_{i} s_{j} e^{-\beta H}

(i) Show that, for i>1i>1,

s1si=1Zs,tst(Mi1)st(MNi+1)ts\left\langle s_{1} s_{i}\right\rangle=\frac{1}{Z} \sum_{s, t} s t\left(M^{i-1}\right)_{s t}\left(M^{N-i+1}\right)_{t s}

(ii) By diagonalizing MM, or otherwise, calculate MpM^{p} for any positive integer pp. Hence show that

s1si=tanhi1(βJ)+tanhNi+1(βJ)1+tanhN(βJ)\left\langle s_{1} s_{i}\right\rangle=\frac{\tanh ^{i-1}(\beta J)+\tanh ^{N-i+1}(\beta J)}{1+\tanh ^{N}(\beta J)}