Paper 3, Section II, 29K29 K

Stochastic Financial Models
Part II, 2018

Consider a multi-period model with asset prices Sˉt=(St0,,Std),t{0,,T}\bar{S}_{t}=\left(S_{t}^{0}, \ldots, S_{t}^{d}\right), t \in\{0, \ldots, T\}, modelled on a probability space (Ω,F,P)(\Omega, \mathcal{F}, \mathbb{P}) and adapted to a filtration (Ft)t{0,,T}\left(\mathcal{F}_{t}\right)_{t \in\{0, \ldots, T\}}. Assume that F0\mathcal{F}_{0} is P\mathbb{P}-trivial, i.e. P[A]{0,1}\mathbb{P}[A] \in\{0,1\} for all AF0A \in \mathcal{F}_{0}, and assume that S0S^{0} is a P\mathbb{P}-a.s. strictly positive numéraire, i.e. St0>0PS_{t}^{0}>0 \mathbb{P}-a.s. for all t{0,,T}t \in\{0, \ldots, T\}. Further, let Xt=(Xt1,,Xtd)X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right) denote the discounted price process defined by Xti:=Sti/St0,t{0,,T},i{1,,d}X_{t}^{i}:=S_{t}^{i} / S_{t}^{0}, t \in\{0, \ldots, T\}, i \in\{1, \ldots, d\}.

(a) What does it mean to say that a self-financing strategy θˉ\bar{\theta} is an arbitrage?

(b) State the fundamental theorem of asset pricing.

(c) Let Q\mathbb{Q} be a probability measure on (Ω,F)(\Omega, \mathcal{F}) which is equivalent to P\mathbb{P} and for which EQ[Xt]<\mathbb{E}_{\mathbb{Q}}\left[\left|X_{t}\right|\right]<\infty for all tt. Show that the following are equivalent:

(i) Q\mathbb{Q} is a martingale measure.

(ii) If θˉ=(θ0,θ)\bar{\theta}=\left(\theta^{0}, \theta\right) is self-financing and θ\theta is bounded, i.e. maxt=1,,Tθtc<\max _{t=1, \ldots, T}\left|\theta_{t}\right| \leqslant c<\infty for a suitable c>0c>0, then the value process VV of θˉ\bar{\theta} is a Q\mathbb{Q}-martingale.

(iii) If θˉ=(θ0,θ)\bar{\theta}=\left(\theta^{0}, \theta\right) is self-financing and θ\theta is bounded, then the value process VV of θˉ\bar{\theta} satisfies

EQ[VT]=V0\mathbb{E}_{\mathbb{Q}}\left[V_{T}\right]=V_{0}

[Hint: To show that (iii) implies (i) you might find it useful to consider self-financing strategies θˉ=(θ0,θ)\bar{\theta}=\left(\theta^{0}, \theta\right) with θ\theta of the form

θs:={1A if s=t0 otherwise \theta_{s}:= \begin{cases}\mathbf{1}_{A} & \text { if } s=t \\ 0 & \text { otherwise }\end{cases}

for any AFt1A \in \mathcal{F}_{t-1} and any t{1,,T}t \in\{1, \ldots, T\}.]

(d) Prove that if there exists a martingale measure Q\mathbb{Q} satisfying the conditions in (c) then there is no arbitrage.