Paper 4, Section II, J
Let be independent, identically distributed random variables with finite mean . Explain what is meant by saying that the random variable is a stopping time with respect to the sequence .
Let be a stopping time with finite mean . Prove Wald's equation:
[Here and in the following, you may use any standard theorem about integration.]
Suppose the are strictly positive, and let be the renewal process with interarrival times . Prove that satisfies the elementary renewal theorem:
A computer keyboard contains 100 different keys, including the lower and upper case letters, the usual symbols, and the space bar. A monkey taps the keys uniformly at random. Find the mean number of keys tapped until the first appearance of the sequence 'lava' as a sequence of 4 consecutive characters.
Find the mean number of keys tapped until the first appearance of the sequence 'aa' as a sequence of 2 consecutive characters.