Paper 1, Section II, K

Stochastic Financial Models
Part II, 2018

(a) What does it mean to say that (Mn,Fn)n0\left(M_{n}, \mathcal{F}_{n}\right)_{n \geqslant 0} is a martingale?

(b) Let Y1,Y2,Y_{1}, Y_{2}, \ldots be independent random variables on (Ω,F,P)(\Omega, \mathcal{F}, \mathbb{P}) with Yi>0PY_{i}>0 \mathbb{P}-a.s. and E[Yi]=1,i1\mathbb{E}\left[Y_{i}\right]=1, i \geqslant 1. Further, let

M0=1 and Mn=i=1nYi,n1M_{0}=1 \quad \text { and } \quad M_{n}=\prod_{i=1}^{n} Y_{i}, \quad n \geqslant 1

Show that (Mn)n0\left(M_{n}\right)_{n \geqslant 0} is a martingale with respect to the filtration Fn=σ(Y1,,Yn)\mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right).

(c) Let X=(Xn)n0X=\left(X_{n}\right)_{n \geqslant 0} be an adapted process with respect to a filtration (Fn)n0\left(\mathcal{F}_{n}\right)_{n \geqslant 0} such that E[Xn]<\mathbb{E}\left[\left|X_{n}\right|\right]<\infty for every nn. Show that XX admits a unique decomposition

Xn=Mn+An,n0,X_{n}=M_{n}+A_{n}, \quad n \geqslant 0,

where M=(Mn)n0M=\left(M_{n}\right)_{n \geqslant 0} is a martingale and A=(An)n0A=\left(A_{n}\right)_{n \geqslant 0} is a previsible process with A0=0A_{0}=0, which can recursively be constructed from XX as follows,

A0:=0,An+1An:=E[Xn+1XnFn]A_{0}:=0, \quad A_{n+1}-A_{n}:=\mathbb{E}\left[X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right]

(d) Let (Xn)n0\left(X_{n}\right)_{n \geqslant 0} be a super-martingale. Show that the following are equivalent:

(i) (Xn)n0\left(X_{n}\right)_{n \geqslant 0} is a martingale.

(ii) E[Xn]=E[X0]\mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[X_{0}\right] for all nNn \in \mathbb{N}.