Paper 4, Section I, 2F2 F

Topics in Analysis
Part II, 2018

Let 0α<10 \leqslant \alpha<1 and A>0A>0. If we have an infinite sequence of integers mnm_{n} with 1mnAnα1 \leqslant m_{n} \leqslant A n^{\alpha}, show that

n=1mnn!\sum_{n=1}^{\infty} \frac{m_{n}}{n !}

is irrational.

Does the result remain true if the mnm_{n} are not restricted to integer values? Justify your answer.