Paper 2, Section II, F
Part II, 2018
(a) Give Bernstein's probabilistic proof of Weierstrass's theorem.
(b) Are the following statements true or false? Justify your answer in each case.
(i) If is continuous, then there exists a sequence of polynomials converging pointwise to on .
(ii) If is continuous, then there exists a sequence of polynomials converging uniformly to on .
(iii) If is continuous and bounded, then there exists a sequence of polynomials converging uniformly to on .
(iv) If is continuous and are distinct points in , then there exists a sequence of polynomials with , for , converging uniformly to on .
(v) If is times continuously differentiable, then there exists a sequence of polynomials such that uniformly on for each .