Paper 2, Section II, B

Asymptotic Methods
Part II, 2018

Given that +eu2du=π\int_{-\infty}^{+\infty} e^{-u^{2}} d u=\sqrt{\pi} obtain the value of limR+R+Reitu2du\lim _{R \rightarrow+\infty} \int_{-R}^{+R} e^{-i t u^{2}} d u for real positive tt. Also obtain the value of limR+0Reitu3du\lim _{R \rightarrow+\infty} \int_{0}^{R} e^{-i t u^{3}} d u, for real positive tt, in terms of Γ(43)=0+eu3du.\Gamma\left(\frac{4}{3}\right)=\int_{0}^{+\infty} e^{-u^{3}} d u .

For α>0,x>0\alpha>0, x>0, let

Qα(x)=1π0πcos(xsinθαθ)dθQ_{\alpha}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta-\alpha \theta) d \theta

Find the leading terms in the asymptotic expansions as x+x \rightarrow+\infty of (i) Qα(x)Q_{\alpha}(x) with α\alpha fixed, and (ii) of Qx(x)Q_{x}(x).