Paper 2, Section I, G

Automata and Formal Languages
Part II, 2018

(a) Let E=(QE,Σ,δE,q0,FE)E=\left(Q_{E}, \Sigma, \delta_{E}, q_{0}, F_{E}\right) be a nondeterministic finite-state automaton with ϵ\epsilon-transitions (ϵ(\epsilon-NFA). Define the deterministic finite-state automaton (DFA) D=(QD,Σ,δD,qD,FD)D=\left(Q_{D}, \Sigma, \delta_{D}, q_{D}, F_{D}\right) obtained from EE via the subset construction with ϵ\epsilon-transitions.

(b) Let EE and DD be as above. By inducting on lengths of words, prove that

δ^E(q0,w)=δ^D(qD,w) for all wΣ\hat{\delta}_{E}\left(q_{0}, w\right)=\hat{\delta}_{D}\left(q_{D}, w\right) \text { for all } w \in \Sigma^{*}

(c) Deduce that L(D)=L(E)\mathcal{L}(D)=\mathcal{L}(E).