Paper 1, Section II, G

Automata and Formal Languages
Part II, 2018

(a) Define the halting set K\mathbb{K}. Prove that K\mathbb{K} is recursively enumerable, but not recursive.

(b) Given A,BNA, B \subseteq \mathbb{N}, define a many-one reduction of AA to BB. Show that if BB is recursively enumerable and AmBA \leqslant_{m} B, then AA is also recursively enumerable.

(c) Show that each of the functions f(n)=2nf(n)=2 n and g(n)=2n+1g(n)=2 n+1 are both partial recursive and total, by building them up as partial recursive functions.

(d) Let X,YNX, Y \subseteq \mathbb{N}. We define the set XYX \oplus Y via

XY:={2xxX}{2y+1yY}X \oplus Y:=\{2 x \mid x \in X\} \cup\{2 y+1 \mid y \in Y\}

(i) Show that both XmXYX \leqslant_{m} X \oplus Y and YmXYY \leqslant_{m} X \oplus Y.

(ii) Using the above, or otherwise, give an explicit example of a subset CC of N\mathbb{N} for which neither CC nor N\C\mathbb{N} \backslash C are recursively enumerable.

(iii) For every ZNZ \subseteq \mathbb{N}, show that if XmZX \leqslant_{m} Z and YmZY \leqslant_{m} Z then XYmZX \oplus Y \leqslant_{m} Z.

[Note that we define N={0,1,}\mathbb{N}=\{0,1, \ldots\}. Any use of Church's thesis in your answers should be explicitly stated.]