Paper 2, Section I, B

Classical Dynamics
Part II, 2018

Let x=xi+yj+zk\mathbf{x}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}. Consider a Lagrangian

L=12x˙2+yx˙\mathcal{L}=\frac{1}{2} \dot{\mathbf{x}}^{2}+y \dot{x}

of a particle constrained to move on a sphere x=1/c|\mathbf{x}|=1 / c of radius 1/c1 / c. Use Lagrange multipliers to show that

x¨+y¨ix˙j+c2(x˙2+yx˙xy˙)x=0\ddot{\mathbf{x}}+\ddot{y} \mathbf{i}-\dot{x} \mathbf{j}+c^{2}\left(|\dot{\mathbf{x}}|^{2}+y \dot{x}-x \dot{y}\right) \mathbf{x}=0

Now, consider the system ()(*) with c=0c=0, and find the particle trajectories.