Paper 3, Section I, B

Classical Dynamics
Part II, 2018

Three particles of unit mass move along a line in a potential

V=12((x1x2)2+(x1x3)2+(x3x2)2+x12+x22+x32)V=\frac{1}{2}\left(\left(x_{1}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\left(x_{3}-x_{2}\right)^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)

where xix_{i} is the coordinate of the ii th particle, i=1,2,3i=1,2,3.

Write the Lagrangian in the form

L=12Tijx˙ix˙j12Vijxixj\mathcal{L}=\frac{1}{2} T_{i j} \dot{x}_{i} \dot{x}_{j}-\frac{1}{2} V_{i j} x_{i} x_{j}

and specify the matrices TijT_{i j} and VijV_{i j}.

Find the normal frequencies and normal modes for this system.