Paper 2, Section II, B

Classical Dynamics
Part II, 2018

Define a body frame ea(t),a=1,2,3\mathbf{e}_{a}(t), a=1,2,3 of a rotating rigid body, and show that there exists a vector ω=(ω1,ω2,ω3)\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right) such that

e˙a=ω×ea\dot{\mathbf{e}}_{a}=\boldsymbol{\omega} \times \mathbf{e}_{a}

Let L=I1ω1(t)e1+I2ω2(t)e2+I3ω3(t)e3\mathbf{L}=I_{1} \omega_{1}(t) \mathbf{e}_{1}+I_{2} \omega_{2}(t) \mathbf{e}_{2}+I_{3} \omega_{3}(t) \mathbf{e}_{3} be the angular momentum of a free rigid body expressed in the body frame. Derive the Euler equations from the conservation of angular momentum.

Verify that the kinetic energy EE, and the total angular momentum L2L^{2} are conserved. Hence show that

ω˙32=f(ω3),\dot{\omega}_{3}^{2}=f\left(\omega_{3}\right),

where f(ω3)f\left(\omega_{3}\right) is a quartic polynomial which should be explicitly determined in terms of L2L^{2} and EE.