Paper 2, Section I, B

Cosmology
Part II, 2018

(a) Consider a homogeneous and isotropic universe with a uniform distribution of galaxies. For three galaxies at positions rA,rB,rC\mathbf{r}_{A}, \mathbf{r}_{B}, \mathbf{r}_{C}, show that spatial homogeneity implies that their non-relativistic velocities v(r)\mathbf{v}(\mathbf{r}) must satisfy

v(rBrA)=v(rBrC)v(rArC)\mathbf{v}\left(\mathbf{r}_{B}-\mathbf{r}_{A}\right)=\mathbf{v}\left(\mathbf{r}_{B}-\mathbf{r}_{C}\right)-\mathbf{v}\left(\mathbf{r}_{A}-\mathbf{r}_{C}\right)

and hence that the velocity field coordinates viv_{i} are linearly related to the position coordinates rjr_{j} via

vi=Hijrjv_{i}=H_{i j} r_{j}

where the matrix coefficients HijH_{i j} are independent of the position. Show why isotropy then implies Hubble's law

v=Hr, with H independent of r\mathbf{v}=H \mathbf{r}, \quad \text { with } H \text { independent of } \mathbf{r}

Explain how the velocity of a galaxy is determined by the scale factor aa and express the Hubble parameter H0H_{0} today in terms of aa.

(b) Define the cosmological horizon dH(t)d_{H}(t). For an Einstein-de Sitter universe with a(t)t2/3a(t) \propto t^{2 / 3}, calculate dH(t0)d_{H}\left(t_{0}\right) at t=t0t=t_{0} today in terms of H0H_{0}. Briefly describe the horizon problem of the standard cosmology.