Paper 1, Section II, B

Cosmology
Part II, 2018

A flat (k=0)(k=0) homogeneous and isotropic universe with scale factor a(t)a(t) is filled with a scalar field ϕ(t)\phi(t) with potential V(ϕ)V(\phi). Its evolution satisfies the Friedmann and scalar field equations,

H2=13MPl2(12ϕ˙2+c2V(ϕ)),ϕ¨+3Hϕ˙+c2dVdϕ=0H^{2}=\frac{1}{3 M_{\mathrm{Pl}}^{2}}\left(\frac{1}{2} \dot{\phi}^{2}+c^{2} V(\phi)\right), \quad \ddot{\phi}+3 H \dot{\phi}+c^{2} \frac{d V}{d \phi}=0

where H(t)=a˙aH(t)=\frac{\dot{a}}{a} is the Hubble parameter, MPlM_{\mathrm{Pl}} is the reduced Planck mass, and dots denote derivatives with respect to cosmic time tt, e.g. ϕ˙dϕ/dt\dot{\phi} \equiv d \phi / d t.

(a) Use these equations to derive the Raychaudhuri equation, expressed in the form:

H˙=12MPl2ϕ˙2\dot{H}=-\frac{1}{2 M_{\mathrm{Pl}}^{2}} \dot{\phi}^{2}

(b) Consider the following ansatz for the scalar field evolution,

ϕ(t)=ϕ0lntanh(λt)\phi(t)=\phi_{0} \ln \tanh (\lambda t)

where λ,ϕ0\lambda, \phi_{0} are constants. Find the specific cosmological solution,

H(t)=λϕ02MPl2coth(2λt)a(t)=a0[sinh(2λt)]ϕ02/2MPl2,a0 constant. \begin{aligned} H(t) &=\lambda \frac{\phi_{0}^{2}}{M_{\mathrm{Pl}}^{2}} \operatorname{coth}(2 \lambda t) \\ a(t) &=a_{0}[\sinh (2 \lambda t)]^{\phi_{0}^{2} / 2 M_{\mathrm{Pl}}^{2}}, \quad a_{0} \text { constant. } \end{aligned}

(c) Hence, show that the Hubble parameter can be expressed in terms of ϕ\phi as

H(ϕ)=λϕ02MP12cosh(ϕϕ0),H(\phi)=\lambda \frac{\phi_{0}^{2}}{M_{\mathrm{P} 1}^{2}} \cosh \left(\frac{\phi}{\phi_{0}}\right),

and that the scalar field ansatz solution ( \dagger ) requires the following form for the potential:

V(ϕ)=2λ2ϕ02c2[(3ϕ022MPl21)cosh2(ϕϕ0)+1]V(\phi)=\frac{2 \lambda^{2} \phi_{0}^{2}}{c^{2}}\left[\left(\frac{3 \phi_{0}^{2}}{2 M_{\mathrm{Pl}}^{2}}-1\right) \cosh ^{2}\left(\frac{\phi}{\phi_{0}}\right)+1\right]

(d) Assume that the given parameters in V(ϕ)V(\phi) are such that 2/3<ϕ02/MPl2<22 / 3<\phi_{0}^{2} / M_{\mathrm{Pl}}^{2}<2. Show that the asymptotic limit for the cosmological solution as t0t \rightarrow 0 exhibits decelerating power law evolution and that there is an accelerating solution as tt \rightarrow \infty, that is,

t0,ϕ,a(t)tϕ02/2MPl2t,ϕ0,a(t)exp(λϕ02t/MPl2).\begin{array}{lll} t \rightarrow 0, & \phi \rightarrow-\infty, & a(t) \sim t^{\phi_{0}^{2} / 2 M_{\mathrm{Pl}}^{2}} \\ t \rightarrow \infty, & \phi \rightarrow 0, & a(t) \sim \exp \left(\lambda \phi_{0}^{2} t / M_{\mathrm{Pl}}^{2}\right) . \end{array}

Find the time tacct_{\mathrm{acc}} at which the solution transitions from deceleration to acceleration.