Paper 3, Section II, D

Electrodynamics
Part II, 2018

Starting from the covariant form of the Maxwell equations and making a suitable choice of gauge which you should specify, show that the 4-vector potential due to an arbitrary 4-current Jμ(x)J^{\mu}(x) obeys the wave equation,

(21c22t2)Aμ=μ0Jμ\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) A^{\mu}=-\mu_{0} J^{\mu}

where xμ=(ct,x)x^{\mu}=(c t, \mathbf{x}).

Use the method of Green's functions to show that, for a localised current distribution, this equation is solved by

Aμ(t,x)=μ04πd3xJμ(tret,x)xxA^{\mu}(t, \mathbf{x})=\frac{\mu_{0}}{4 \pi} \int d^{3} x^{\prime} \frac{J^{\mu}\left(t_{\mathrm{ret}}, \mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}

for some tret t_{\text {ret }} that you should specify.

A point particle, of charge qq, moving along a worldline yμ(τ)y^{\mu}(\tau) parameterised by proper time τ\tau, produces a 4 -vector potential

Aμ(x)=μ0qc4πy˙μ(τ)Rν(τ)y˙ν(τ)A^{\mu}(x)=\frac{\mu_{0} q c}{4 \pi} \frac{\dot{y}^{\mu}\left(\tau_{\star}\right)}{\left|R^{\nu}\left(\tau_{\star}\right) \dot{y}_{\nu}\left(\tau_{\star}\right)\right|}

where Rμ(τ)=xμyμ(τ)R^{\mu}(\tau)=x^{\mu}-y^{\mu}(\tau). Define τ(x)\tau_{\star}(x) and draw a spacetime diagram to illustrate its physical significance.

Suppose the particle follows a circular trajectory,

y(t)=(Rcos(ωt),Rsin(ωt),0)\mathbf{y}(t)=(R \cos (\omega t), R \sin (\omega t), 0)

(with y0=cty^{0}=c t ), in some inertial frame with coordinates (ct,x,y,z)(c t, x, y, z). Evaluate the resulting 4 -vector potential at a point on the zz-axis as a function of zz and tt.